◀︎ http://pocket.ebo-shi.com/physics/history/
文明誕生の歩みと哲学から天文、古典的科学と現代物理への進展史

タグにて、広く関連した項目へ、絞り込み表示する  🔴 人類文明史年表

関連タグ:哲学  宗教  天文  数学  物理  核物理学  電磁気力  量子  熱力学  化学  医学  心理学  認知学  言語学  古典物理学  現代物理学  理論物理学  技術

史実  コペルニクス  ケプラー  ガリレオ  ニュートン  マクスウェル  アインシュタイン  ホーキング  Black Hole  光について  統一理論  量子コンピューター  情報処理  オイラー  フェルマー  誕生|永眠

 

・年・内 容名 称タグ解 説
補 足、 MEMO

1788年“最小作用の原理” に沿う解析力学、“ラグランジュ力学” を構築ジョゼフ ルイ ラグランジュ(53歳)
Joseph-Louis Lagrange
物理ニュートン力学を後の数学、ラグランジュ力学(最小作用の原理) とハミルトン力学を用い総合。後の電磁気学や相対性理論等に応用でき、マクスウェル方程式、重力場方程式を導き扱える。

1852年磁気の‘力線’の実在性を主張マイケル ファラデー電磁気力線の概念については、一部から反発もあった。

1854年電磁気に関する論文ジェームズ クラーク マクスウェル電磁気“ファラデーの力線について” を発表。後にファラデーと交流を交わす様になる。

1860年気体の分子論に関する論文ジェームズ クラーク マクスウェル物理個々の粒子の速度分布はマクスウェル分布に従う。気体の動力学的で、統計的な理論を示す。

1861年論文 “物理的な力線について” を発表し、 は電磁気と 双対的な事象の側面 と総括ジェームズ クラーク マクスウェル
James Clerk Maxwell
物理,
電磁気
エーテルに渦流が満たし、間の小さな歯車的構造が力線に沿い整列した力学モデルを提案し、正確なアンペールの法則を初めて導く。さらにエーテルを弾性体とし、電気と磁気の相互作用の波の伝播速度を光速度と導き、光と電磁気は双対的だと導いた。当時、実験検証の無い要素も合わせ、理論を組み上げた。
光の三原色の各フィルター別の写真を重ね、史上初のカラー写真の撮影にマクスウェルが成功。
1867年に、ファラデー永眠。

1865年熱力学の 第2法則、
“エントロピーの増大”を提示
ルドルフ ユリウス エマヌエル クラウジウス熱力学“エネルギー保存則”とエントロピーの理論を完成させ、熱力学の第二法則を示す。状態が取り得る可能な状態に対し、現状の乱雑度。 情報理論の基礎ともなった。

1865年論文 “電磁場の 動的理論”で
“マクスウェルの方程式”を発表
ジェームズ クラーク マクスウェル
James Clerk Maxwell
電磁気,
物理
電磁気に関する3つ目の論文で電磁波という用語を使い、電気と磁気と運動の相関を説いた。ここでは、エーテル、渦流、歯車等の未観測の要素を取り省き、ラグランジュ力学(最小作用の原理)で記述された。

1873年電気磁気論の 総括を出版
4つの方程式 を提唱
“マクスウェルの悪魔”を提示
ジェームズ クラーク マクスウェル
James Clerk Maxwell
電磁気,
熱力学
クラウジウスが提唱した熱力学の第二法則、“エントロピーの増大”に対する疑問、減少可能なパラドックスを示した思考実験“マクスウェルの悪魔”を提唱。均一温度の並ぶ2部屋に横断する小穴の扉が有り 高速運動粒子が来た時のみ扉を開ける悪魔が、物理的運動なしに、片側の温度を下げ続ける思考実験。

1879年1879〜1955年アルベルト アインシュタイン (0歳)アインシュタイン、ドイツのウィルムで誕生。マクスウェル、ケンブリッジで永眠。

1929年マクスウェルの悪魔(熱力学的矛盾)の一次的撃退法 を示すレオ シラード
Leo Szilard
熱力学シラードのエンジンと呼ぶ粒子を1つ毎に扱う理論模型で、観測には必ず1つ以上の光子を当てる必要があり、そこでエントロピー増大が必要だとした。これは限定的な回答でしかなかったが、 熱力学を発展させた。

1936年計算可能な数について、 決定問題への応用にて
“チューリングマシン”提唱
アラン チューリング
エミール レオン ポスト
熱力学軸が無限に長いテープ上を移動し、情報を読み込み、メモリに記憶、書き込むモデル。計算機の原理構造を数学的に定義した計算模型。ある論理式が回答可能かを事前判別する方法は‘原理的に無い’と提示。
アロンゾ チャーチが、アルゴリズム を定義。

1961年マクスウェルの悪魔の矛盾 を退治、計算に必要な最小エネルギーについてロルフ ランダウアー
Rolf Landauer
熱力学,
物理,
量子
コンピュータ記憶消去は非可逆でエントロピー拡大が必須と示し、情報処理は物理法則にしたがい物理的に許せない計算原理は不可能と提示。マクスウェルの悪魔の記憶の中でエントロピーが増大する事を示した。
当年、ガガーリンが人類初、地球周回軌道へ。

1973年可逆でエントロピー消費 (増大) 不用な測定法を提示チャールズ ヘンリー ベネット
ロルフ ランダウアー
熱力学,
物理
任意の計算が、熱力学的に可逆(時間対称的)な装置で実現できる構造を、理論的に示した。ランダウアーが示した(上記1961年) マクスウェルの悪魔の退治法を進展させ、真去った。

1976年ブラックホールとホーキング放射に絡む、インフォメーション・パラドックスを提示スティーヴン ホーキング
Stephen William Hawking
量子,
物理,
熱力学
ホーキング放射は、Black Holeと真空上での量子ゆらぎによりランダムに生成された素粒子間の反応で対消滅する。これは吸い込まれた物質の情報とは、質量以外の関わりが無い。とすればこの物質の情報は、非可逆で完全な消失に見えるという矛盾。量子力学が正しいなら、物質の情報は何らかの形で保存されるはず、というパラドックス。
(ホイーラーが、も脱出不能な未発見当時の超質量天体をBlack Holeと名付けたが、穴とは2次元的表現上の例えで、実際は球状の天体)

・年・内 容人 名タグ解 説
補 足、 MEMO

・数学、情報史関係の、年表や解説の参考、出典ソースです。

             

・物理学史関係の、年表や解説の参考、出典ソースです。